If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5592=900c^2
We move all terms to the left:
5592-(900c^2)=0
a = -900; b = 0; c = +5592;
Δ = b2-4ac
Δ = 02-4·(-900)·5592
Δ = 20131200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20131200}=\sqrt{14400*1398}=\sqrt{14400}*\sqrt{1398}=120\sqrt{1398}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-120\sqrt{1398}}{2*-900}=\frac{0-120\sqrt{1398}}{-1800} =-\frac{120\sqrt{1398}}{-1800} =-\frac{\sqrt{1398}}{-15} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+120\sqrt{1398}}{2*-900}=\frac{0+120\sqrt{1398}}{-1800} =\frac{120\sqrt{1398}}{-1800} =\frac{\sqrt{1398}}{-15} $
| 2p=p+3- | | 9c=c+8 | | 4b=b+60 | | 4,15x+8x^2=-0,05 | | 5s=s+24 | | 9s=s+24 | | 2(x-9)=4(x+1)-18 | | -40n+40=8-24 | | -4(1-6b)=-172 | | 7s=s+42 | | 3^(x+6)=27 | | 7(x-2)=7x+5 | | 3(t+2)=t+5(2t+1) | | 4v=v+48 | | -11=3a+7+6 | | 3c=c+58 | | 11-7m-12=8m+21-4m | | -11=a=7=6 | | 2z=z+2 | | 6(w-4)=3w-45 | | -8(5n-5)=8(1-3n) | | -9h+5-2(h-3)=-6h+4 | | 9p=p+16 | | 5(2x=7)-4x | | 5v=v+68 | | 22=-7v-6 | | 7u=u+48 | | x=(4x-10) | | 3v=v+58 | | (9x+1)=(7x+3) | | 5c=c+44 | | 4/9p-2/3p=4 |